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ABSTRACT

We present 3D hydrodynamical simulations of core convection with a stably stratified envelope of a 25

M� star in the early phase of the main-sequence. We use the explicit gas-dynamics code PPMstar which

tracks two fluids and includes radiation pressure and radiative diffusion. Multiple series of simulations

with different luminosities and radiative thermal conductivities are presented. The entrainment rate at

the convective boundary, internal gravity waves in and above the boundary region, and the approach

to dynamical equilibrium shortly after a few convective turnovers are investigated. From the results of

these simulations we extrapolate to find the entrainment rate at the nominal heating rate and thermal

diffusion given by the MESA stellar evolution model on which the 3D stratification is based. Further,

to study the effect of radiative diffusion on the thermal timescale, we perform very long simulations

accelerated by 10000 times their nominal luminosities. In these simulations the growing penetrative

convection reduces the initially unrealistically large entrainment. This reduction is enabled by a spatial

separation that develops between the entropy gradient and the composition gradient. The convective

boundary moves outward much more slowly at the end of these simulations. Finally, we present

a method to predict the extent and character of penetrative convection beyond the Schwarzschild

boundary. This method is intended to be ultimately deployed in 1D stellar evolution calculations and

is based on the properties of penetrative convection in our simulations carried forward through the

local thermal timescale.

Keywords: Astrophysical fluid dynamics (101) — Hydrodynamics (1963) — Hydrodynamical simula-

tions (767) — Stellar oscillations (1617) — Stellar interiors (1606) — Stellar convective

zones (301) – Massive stars (732) — Stellar structures (1631)

1. INTRODUCTION

Convective transport can be very efficient in stel-

lar interiors, owing to the high energy densities there

(Kippenhahn et al. 1990). At the convective-radiative

boundary, it can play a crucial role in mixing chemical

species (e.g. Denissenkov et al. 2012, in novae). Yet con-

vection is one major uncertainty in the 1D stellar evolu-

tion model (e.g. Sukhbold & Woosley 2014; Davis et al.

2018; Kaiser et al. 2020, in massive stars), with a set of

parameters to calibrate to match with the observations

(e.g. Schaller et al. 1992; Ribas et al. 2000; Trampedach

et al. 2014; Tkachenko et al. 2020; Higl et al. 2021).

For example, the efficiency of convective boundary mix-

ing (CBM) during the main-sequence directly affects the

model’s brightness and main-sequence lifetime (Salaris

& Cassisi 2017; Higgins & Vink 2019). The local the-

ory of convection, mixing-length theory (MLT) formal-

ized by Böhm-Vitense (1958) and Cox & Giuli (1968) is

widely used in 1D stellar evolution codes (e.g. Paxton

et al. 2010). Other sophisticated theories on convection

have also been proposed. For example, Xiong (1986)

developed a non-local MLT that indicates penetrative

convection. Pasetto et al. (2014) removes the mixing

length in their convection theory. A spectrum of turbu-

lent eddies instead of a typical rising blob is considered

in Canuto & Mazzitelli (1991).

Convection is not only an important mechanism to

transport energy and species, but also excites inter-

nal gravity waves (IGWs) (Lecoanet & Quataert 2013;

Pinçon et al. 2016). It is predicted theoretically that

radiative diffusion damps travelling IGWs, which carry

angular momentum(Rogers & McElwaine 2017; Aerts
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et al. 2019). This process leads to deposition of angular

momentum where the IGWs are damped, and hence to

redistribution of angular momentum (Zahn et al. 1997).

Asteroseismological observations help constrain convec-

tive boundary mixing and diffusive mixing in the radia-

tive envelope (Moravveji et al. 2015; Michielsen et al.

2019, 2021).

Penetrative convection has been investigated in the-

ory and through numerical simulations for decades in

various contexts, core convections and shell convections

for exapmle (Roxburgh 1989; Arnett et al. 2015; Anders

et al. 2022; Korre & Featherstone 2021; Blouin et al.

2023). The extent of convective penetration and its

dependence on various properties of the Schwarzschild

boundary (SB) have been studied (Hurlburt et al.

1994; Baraffe et al. 2021). The temperature gradient

in the convective boundary (CB) region may be de-

duced by asteroseismological observation and modeling

(Michielsen et al. 2021). Current treatment of the con-

vective boudary in 1D stellar evolution simulations in-

cludes f overshooting (Herwig et al. 2000), instantaneous

overshooting (Maeder 1976) and entrainment (Staritsin

2013; Scott et al. 2021). In this work, we define the SB

to be the location where the rising radiation diffusion

energy flux as we go outward in radius in the core con-

vection zone first equals the total luminosity. We find

that this is not the location where the entropy gradient

first becomes positive and the temperature gradient first

becomes subadiabatic, as we will discuss later. Beyond

the SB we have a region of penetrative convection lead-

ing up to the CB. We here define the CB to be that

radius at which the radiative energy flux becomes equal

to the total luminosity, the convective entropy flux van-

ishes, and also the turbulent dissipation of kinetic energy

of the convection flow vanishes.

Previously, in the first paper of this series, we have in-

troduced the general properties of core-convection sim-

ulations of a 25 M� star approximated with an ideal

gas equation of state (Herwig et al. 2023, Paper I). We

confirmed earlier results of massive main-sequence star

simulations by Meakin & Arnett (2007) and Gilet et al.

(2013). These authors reported entrainment rates of en-

velope material into the convective core that are orders

of magnitude larger than what is compatible with stellar

models and basic observational properties. Candidate

physical mechanisms that may impact the entrainment

rate in hydrodynamic simulations include a more real-

istic thermodynamic stratification, radiative diffusion,

rotation and magnetic fields.

The properties of IGWs in our 3D PPMstar ideal gas

simulations are presented in (Thompson et al. 2023, Pa-

per II). One important aspect of IGWs excited by core

convection is the possibility that they may cause mate-

rial or angular momentum mixing in the radiative layer.

Radiative diffusion permits the entropy in the stably

stratified envelope to no longer be a constant of the mo-

tion. As a consequence, irreversible envelope mixing be-

comes possible, even though IGW velocity amplitudes

are damped by radiative diffusion. Our strategy in this

paper is to study the impact of radiation pressure and

radiative diffusion on the convection zone in our model

star and on the structure of the CB region. We will

analyze the spectrum of IGWs that are excited at the

CB for the purpose of comparison with the studies of

Paper I and Paper II in this series, but we will leave the

issue of potential material mixing in the envelope to a

forthcoming paper.

The main goals of this work are as follows: to test

whether adopting a more realistic simulation approach

which includes radiation pressure and diffusion can re-

duce the entrainment rate significantly; to study the ef-

fect of radiative diffusion on the spectrum of IGWs in

the stable envelope; to investigate the stratification of

penetrative convection and develop a method to predict

the convective penetration depth.

The first 3 sections discuss flow phenomena on a short

timescale (convective timescale) and the following two

sections investigate the growing penetrative convection

on a thermal timescale. Finally, we discuss our results

and conclusions in the last section. Specifically, in §2 we

present the simulation method, simulation setup, and

assumptions. Section §3 describes the general flow dy-

namics from the onset of core convection to a 3D quasi-

steady state on a convective timescale, introduces the

CBM, excitation of IGWs and their power spectra, and

discusses the effect of radiative diffusion on the CBM

and IGWs along the way. In §4, the long-time behaviors

of stellar stratification and convective penetration are

discussed. The gradual development of the penetration

region beyond the SB is observed in a very long dura-

tion simulation. In this simulation the development of a

positive entropy gradient in the penetration region that

is sustained despite efficient species mixing is identified

as a key structure that acts to bring the intensity of con-

vective motions down, so that further entrainment and

outward motion of the convective boundary is greatly

reduced. In §5, a method to predict the penetration

depth and the stratification within the penetration re-

gion is presented in terms of a 1-D model of the core

convection zone that can be worked out if the kinetic

energy dissipation rate up to the SB has either been

determined from a short 3-D simulation on a modest

grid or has been approximated by interpolating between
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Figure 1. Comparison of adopted base state for the 3D
simulations and the MESA radial profile of density and tem-
perature. Quantities are given in their code units.

such simulations under similar conditions. We summa-

rize and discuss our main results and conclusions in §6.

2. METHODS AND ASSUMPTIONS

To study the effect of radiation, we apply the equation

of state that includes radiation pressure in addition to

that of a monatomic gas. This allows direct application

of the MESA (Paxton et al. 2010, 2013, 2015) model with

minimal fitting and approximation in going from 1D to

3D initialization. The base state is constructed from the

25 M�MESA stellar evolution model (Davis et al. 2018)

1.64×106yr after the start of H burning on the zero-age

main sequence. The exponential CBM model is used. In

this model, the region outside the SB obeys the radiative

temperature gradient. Details on the 1D model can be

found in Paper I. Fig. 1 shows the agreement of radial

profiles of the initial state on the 3D Cartesian grid with

the MESA model.

We use the PPMstar gas dynamics code described in

Woodward et al. (2015) and applied in Woodward et al.

(2015); Jones et al. (2017); Andrassy et al. (2020). The

PPMstar tracks the H rich materials in the stable en-

velope by fractional volume fV, and materials in the

convective core by 1− fV. In this version, the contribu-

tion of radiation is included in the internal energy per

unit mass e, pressure p and specific entropy s

e(ρ, T, µ) =
RT

(γ − 1)µ
+
aT 4

ρ
(1)

p(ρ, T, µ) =
RρT

µ
+
aT 4

3
(2)

s(ρ, T, µ) =−R
µ

ln ρ+
R

(γ − 1)µ
lnT +

4aT 3

3ρ
, (3)

where µ is the mean molecular weight,ρ density, T

temperature, R gas constant, γ = 5/3, a radiation con-

stant. The technique of model equation of state (Wood-

ward 1986) is applied,

p = p00 + (γ̃ − 1)ρε (4)

the coefficients p00 and γ̃ of which are different in each

grid cell, that preserves sound speed cs and energy den-

sity ρε every time step

γ̃ = 1 +
c2sρ

p+ ερ
, p00 = p− (γ̃ − 1)ρε. (5)

The radiative flux,

F = −k∇T (6)

is implemented explicitly in PPMstar as a part of the

energy flux in every time step update, with radiative

thermal conductivity (Kippenhahn et al. 1990)

k =
4acT 3

3κρ
, (7)

where κ is the opacity, c speed of light. Simulations from

M200 to M213 (see Table 1) use the following opacity

fit as a function of hydrogen mass fraction and temper-

ature:

κ= min(
ces10

∑3
i=0(ai(log10 T )3−i)

κminccorr
, κtot) (8)

ces = 0.2(1 + xH)

ccorr = 1 + 0.5(
κmax

κmin
− 1)(1− tanh(w log10

T

T0
))

where xH is hydrogen mass fraction, κmin, κmax, κtot,

ai, T0 and w are fitting parameters.

Simulations M284, M250, M251 and M252 use another

opacity fit to the OPAL opacity (Iglesias & Rogers 1996)

as a function of density, temperature and hydrogen mass

fraction:

κ =

5∑
i=0

ai(t7)5−i (9)
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In Eq. 9, t7 = log10 T − 7 and

ai = w11a
i
11 + w12a

i
12 + w21a

i
21 + w22a

i
22

w11 = (r2 − r)(x2 − xh)/((r2 − r1)(x2 − x1))

w12 = (r2 − r)(xh − x1)/((r2 − r1)(x2 − x1))

w21 = (r − r1)(x2 − xh)/((r2 − r1)(x2 − x1))

w22 = (r − r1)(xh − x1)/((r2 − r1)(x2 − x1))

r = log10 ρ− 3 log10 T + 21

where x1, x2, r1, r2, aijk are fitting parameters.

We apply a reflecting boundary condition at radius

2670 Mm, and make the heat fluxes at opposite cell in-

terfaces equal for 3 grid cell widths inside this reflecting

sphere. We perform a series of 25M� simulations (Ta-

ble 1), with varying driving luminosities and radiative

thermal conductivity k. Properties such as the mass

entrainment rate at the CB at the nominal luminosity

are extrapolated from simulations with boosted lumi-

nosities. For a luminosity boosting factor X, we have

cases with 0, X2/3 and X boosting factors for radiative

diffusion. Henceforth, we refer to them by no diffusion,

intermediate diffusion, and high diffusion.

3. FROM THE INITIAL TRANSIENT TO A

QUASI-STEADY 3D FLOW

Here we briefly describe the dynamics of the initial

transient which takes place for the first few convective

turn-overs from time 0, and the following quasi-steady

3D flow. In our many cases considered here, we find

that the visualization looks qualitatively similar regard-

less of the boosting factor for luminosity and radiative

diffusion. See our representative simulation M252 (lu-

minosity and radiative diffusion boosted by a factor of

10000) at https://ppmstar.org. In the discussion below,

we will point out the effect of radiative diffusion when

it matters qualitatively and quantitatively.

3.1. The development of the fully convective core

At time 0, the initial state is in perfect hydrostatic

equilibrium. The radiative diffusion is transporting heat

according to the stratification and opacity. As in Paper I

the nuclear burning is emulated as a time-independent

Gaussian volume heating ∼ exp(−r2/(2σ2)), σ =

280 Mm. Given the temperature gradient, there is the

excess heat in the core accumulating due to insufficient

radiative energy transport. The center of the core be-

comes convectively unstable as a result. The central gas

parcels rise because of the buoyancy force and thereby

convection starts. Because the convective core is almost

adiabatic, the moving fluid elements move effortlessly

on the same adiabat. The excess heat unable to be

carried by the radiative diffusion is now transported by

Table 1. Simulation summary providing the run ID, the
grid, luminosity L boosting factor, thermal conductivity k
boosting factor, end time of the run, and entrainment rate,
∗ denotes values from the MESA model. The runs labelled
by † are long-duration, the entrainment rates of which de-
cline over time. Hence we fit them by a straight line from
dump 5000 to 6000 to compute the corresponding entrain-
ment rates.

ID grid L/L∗ K/K∗ tend/h Ṁ/[M� yr−1]

M200 7683 1000.0 0.0 1817.6 6.82× 10−1

M201 11523 1000.0 0.0 3556.3 6.85× 10−1

M202 11523 100.0 0.0 2439.2 3.60× 10−2

M203 11523 3162.0 0.0 1468.1 2.41× 100

M204 11523 1000.0 100.0 3362.9 6.53× 10−1

M205 11523 100.0 21.5 2648.4 3.91× 10−2

M206 11523 3162.0 215.4 1549.8 2.16× 100

M207 11523 1000.0 1000.0 3838.4 3.69× 10−1

M208 11523 100.0 100.0 2446.4 2.00× 10−2

M209 11523 3162.3 3162.3 1465.3 1.36× 100

M210 17283 1000.0 1000.0 3495.3 3.91× 10−1

M211 7683 1000.0 100.0 2089.7 6.31× 10−1

M212 11523 31.62 31.62 2297.4 6.03× 10−3

M213 7683 1000.0 1000.0 3537.5 3.72× 10−1

M284 26883 1000.0 1000.0 3418.4 3.38× 10−1

M250† 8963 3162.3 3162.3 20769.0 5.77× 10−1

M251† 8963 1000.0 1000.0 18444.4 1.74× 10−1

M252† 8963 10000.0 10000.0 25137.6 1.40× 10−1

the emerging convection within the core until the rising,

relatively buoyant fluid elements encounter the positive

entropy gradient where the stratification becomes con-

vectively stable.

Once the rising plumes encounter the entropy gradi-

ent, the buoyancy force restrains them from going fur-

ther outward in radius. The interaction between the

plumes and the convective-radiative boundary excites

IGWs that propagate in the stable envelope. During

the first few convective turnovers, the core convection

becomes fully turbulent and excites IGWs of a broad

range of wavelengths. An analysis of the power spec-

trum of the IGWs in the stable envelope after the initial

transient adjustment of the flow to its 3D degrees of

freedom is presented at the end of this section.

The convective core soon develops the characteris-

tic dipole circulation pattern that was first seen in the

3D simulations of Porter et al. (2000). It has been

noted by many investigators that convection tends to

develop convection cells that extend to the largest ver-

tical scale (Hurlburt et al. 1986; Freytag et al. 1996;

Porter et al. 2000; Andrassy et al. 2022). In Fig. 2, when

the dipole plume hits the CB and diverges, the flows

https://ppmstar.org/
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Figure 2. Images of a thin slice through the center of the star of the horizontal velocity component (top row) of M201 (left
column, no radiative diffusion) and M207 (right column, 1000x radiative diffusion), and of the vorticity magnitude (bottom
row). Movies of these quantities are available at https://ppmstar.org.

become mostly horizontal near the boundary, bringing

along buoyant materials from the boundary. Entrain-

ment of the fluid from the stable layer into the convec-

tion zone is facilitated by the boundary layer separation

(Woodward et al. 2015). We define dynamical equilib-

rium as a state in which the kinetic motions, charater-

ized by kinetic energy density, buyoancy driving, work

by pressure field, become statistically time-independent

on the convective timescale, demonstrated by the hori-

zontal velocity in Fig. 3. While in dynamic equilibrium

the mass entrainment rate decreases as the simulation

approaches a state closer to thermal equilibrium. The

entrainment analysis can be found in §3.3 using the same

methodology as in Paper I.

https://ppmstar.org
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Figure 3. The overall magnitude of horizontal velocities 0.5
Hp below and above the N2 peak (see Eq. 10 ) becomes con-
stant after an initial transient (400 hours) when we average
over the persistent fluctuations.

In stellar evolution models the CB is usually defined

as the radius at which the adiabatic gradient is equal

to the radiative gradient, also known as the SB. Based

on our discussion of a very long-duration simulation in

§4, we choose to define the CB in this work as the ra-

dius where, in statistical dynamical and thermal equi-

librium, the radial derivatives of the radiative and con-

vective heat fluxes as well as the convective heat flux

itself and the kinetic energy dissipation rate all vanish.

The CB, thus defined, is different from the SB, because

at the SB the radial derivative of the radiative heat flux

does not vanish.

3.2. Dynamics and kinematics in dynamical

equilibrium

The convection rapidly organizes itself such that the

total convective flux becomes the luminosity minus the

total radiative energy flux (Fig. 4, Eq. 11, Eq. 12).

Therefore, our simulated star reaches a dynamical equi-

librium over the first few convective turn-overs and stays

in dynamical equilibrium thereafter.

3.2.1. Effect of radiative diffusion

Fig. 5 shows how fV, tangential velocity, and the

Brunt-Väisälä (BV) frequency squared N2, Eq. 10,

evolve for different strengths of radiative diffusion at

1000x the nominal luminosity.

N2 = gδ
Hp

(∇ad −∇star) + gδ
Hp

φ
δ∇µ ≡ N2

t +N2
µ (10)

where

δ = −( ∂lnρ∂lnT )p,µ, φ = ( ∂lnρ∂lnµ )p,T

∇star = dlnT
dlnp ,∇ad = (dlnTdlnp )S ,∇µ = dlnµ

dlnp
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Figure 4. Total convective (radiative) energy flux for
the no-diffision (M201, 0x), intermediate-diffusion (M204,
100x) and high diffusion (M207, 1000x) simulations with
1000x luminosity enhancement at dump 3500. The curves
are smoothed by using moving averages three times over a
window 120 Mm wide and time-averaged over 100 dumps
∼ 140 hr. The fluxes are defined in Eq. 11 and Eq. 12.
Temperature, opacity, and density in Eq. 12 are spherical
averages.

and ρ is density, T temperature, Hp pressure scale

height, µ mean molecular weight, S specific entropy,

∇star the actual temperature gradient, ∇ad the adia-

batic gradient, and ∇star−∇ad is the superadiabaticity.

Outward from the SB by about 120 Mm (10% in radius)

in the initial state of the simulation, N2 has a strong,

slowly migrating peak reflecting the sudden change of

entropy mainly caused by the change in µ at that loca-

tion.

Perhaps the most important effect of the radiative dif-

fusion is that, as this is increased, the position of the

composition change, traced by the fV profile, moves out-

ward less rapidly. This effect can also be seen in the po-

sition of the N2 peak feature. This behavior can be ex-

plained by the fact that when we add radiative diffusion,

we introduce into the problem a mechanism for carrying

the heat introduced into the convection zone outward

through the stably stratified envelope. In the absence of

this mechanism, in addition to entraining high entropy

materials from the envelope, heat must pile up in the

convection zone, and this must cause it to expand. This

is analogous to the helium shell flash in that the igni-

tion of helium fusion in a thermal pulse produces more

energy temporarily than can be carried away by radia-

tive diffusion, causing the star to expand and brighten

(Herwig et al. 2006). In our high diffusion case, heat-

ing by nuclear burning is on average, removed by the

heat energy flowing through the reflecting sphere at our
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Figure 5. Profiles of N2, fV, |Ut| of the simulations with
1000x luminosity enhancement (M201: no diffusion, M204:
K ∼ L2/3, M207: K ∼ L, all at the 11523 grid resolution.)

outer boundary in the form of radiation (Fig. 4). The

total convective flux and total radiative energy flux are

calculated by Eq. 11 and Eq. 12.

Fconv(r) =
∫∫

sphere r

(p+ ρe+ 1
2ρu

2)urdA (11)

Frad(r) = − 4πr2c
3κρ

∂(aT 4)
∂r (12)

The convective flux is the flux of enthalpy plus the ki-

netic energy summed over the sphere at radius r. c is

the speed of light and κ is the opacity.

In cases of no diffusion, there is no diffusive heat

flux across the stably stratified gas in the outer part of

our computational region. The heated convective core

pushes the envelope resulting in positive convective flux

at all radii. We measure that about 55% of the nuclear

heating becomes potential energy by expanding the con-

vective core and compressing the stable envelope (i.e.

redistributing mass in a static gravitational potential),

while 45% becomes internal energy by heating the star

up. In the intermediate diffusion case M204, 42% of

the nuclear heating expands the core and 46% heats the

star up. About 10% of the nuclear heating is trans-

ported outward by radiative diffusion in that case. In

Fig. 5, the convective velocity is slightly smaller in the

high diffusion case but the profile of the tangential ve-

locity remains similar. In all cases, the kinetic energy is

negligible, once a dynamical equilibrium is established,

it mostly does not change over time and stays negligi-

ble. The effect on the motion in the stable envelope, i.e.,

IGWs, is discussed in §3.

The differences in the heights and shapes of the N2

peaks, between the cases of no diffusion and interme-

diate diffusion at the same time (1000 or 2000 hours),

are very small (Fig. 5), because most of the heat in-

jected (90% and 100%) piles up in the convective core

which leads to quantitatively similar dynamics. How-

ever, in the case of high diffusion, the change of location

and shape in the N2 peak is noticeably smaller than

in the other two cases given the same amount of time

(Fig. 5). However, the overshoot and undershoot of the

convective flux, and the overshoot of radiative flux at

1500 Mm suggest the thermal structure is adjusting, at

a small rate. Hence, any significant change in the strat-

ification for the high diffusion cases happens on a longer

timescale than no or intermediate diffusion. To reduce

the computational cost of studying the evolution on a

longer timescale, we investigate the effect of enhancing

luminosity in the next section and the possibility of ac-

celerating the evolution by enhancing the luminosity in

§4.
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The heat piling up in the no or intermediate diffusion

cases explains the fact that the star lifts the convective

core and compresses the envelope. This process will con-

tinue and completely change the stratification because

the total energy of our simulation keeps increasing in

these two cases. Hence, to simulate a realistic star in

thermal equilibrium, the only reasonable scenario is the

high diffusion one, and we later discuss the effect of en-

hancing luminosity using the high diffusion cases only.

In addition, as discussed in §3.3, the entrainment con-

tinues at a relatively constant rate, which suggests that

the star is still adjusting its stratification and has not

yet reached a thermal equilibrium. In such an equilib-

rium, all the temporal dependence on time scales longer

than several large eddy turn-overs in the convection zone

could be expected to very nearly vanish. By definition,

the total heat content will be radiated away at the rate

of the luminosity on a thermal timescale, if there is no

nuclear heating. Therefore, it is not feasible to investi-

gate the dynamics on a thermal timescale in the cases

of no or intermediate diffusion without disrupting the

thermodynamical structure completely. Hence, the dis-

cussion on the evolution on a thermal timescale in §4

and §5 focusses on the high diffusion cases.

3.2.2. Effect of enhancing luminosity

Fig. 6 shows the profiles of N2, fV, and horizontal

velocity for a series of runs in which we vary the lu-

minosity. For each boosting factor, we also enhance the

radiative diffusion by the same factor. Cases of enhance-

ment factors of 31.62, 100, 1000, and 3162 are used. For

the two lowest luminosity cases, we observed essentially

no change within 2000 hours in the profile of fV, and in

the position and the shape of the N2 peak during these

simulations. This certainly does not mean that changes

would not result were these two simulations run longer

in time.

Runs M207 and M209, with luminosity enhancement

factors of 1000 and 3162, reshape the initial fV radial

profile within relatively short times of less than 2500

hours. After this intial reshaping in these high-power

cases, the fV radial profile translates while maintaining

its shape as the gas from above the convection zone is en-

trained. As will be discussed in §4, boosting the nuclear

heating and the radiative diffusion by a common factor

can be regarded as accelerating the time rate of change

of the stellar model. In order to probe the long-time be-

havior of the stellar model, this balanced enhancement

of the luminosity and radiation diffusion is appealing

for our explicit PPMstar code, because it dramatically

lowers the cost of finding the long-time behavior.
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Figure 6. Profiles of N2, fV, |Ut| of M212 (31.62x L∗ &
K∗), M208 (100x L∗ & K∗), M207 (1000x L∗ & K∗), M209
(3162x L∗ & K∗), all at the 11523 grid resolution.

Fig. 7 confirms that the magnitude of velocity scales

with L1/3 in the presence of radiation pressure and ra-

diative diffusion. This scaling is also observed in Paper I.
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Figure 7. Luminosity versus convective velocity magnitude
in the convection zone at 1000 Mm averaged over 20 dumps.
All cases are high diffusion.

3.2.3. Convergence

In Fig. 8, the profiles of N2, fV and horizontal veloc-

ity are presented for a sequence of simulations carried

out at different grid resolutions to show the effect of

refining our computational grid. These simulations are

performed with a luminosity and radiation diffusion en-

hancement factor of 1000. We see that the N2 peak

becomes higher with increasing grid resolution. How-

ever, the location of the N2 peak is roughly the same

regardless of the resolution. The radial profile of fV be-

comes steeper with grid refinement, and it is clear that

this steepening is not complete even on the highest reso-

lution grid shown in the figure. Although there is some

statistical noise evident in the plots of the horizontal

component of the velocity in Fig. 8, it is clear that these

simulations have converged upon mesh refinement to a

well-defined state. Even the radial profiles of fV near the

CB appear to have converged in terms of the position

of the sharp increase in fV though not in its steepness.

The interpretation of the N2 peak and the slope of the

fV not converging on grid refinement is that we have not

converged on mixing. In §4, convergence will be shown

for turbulent dissipation measured from the simulations

and for vorticity in the stable envelope.

3.2.4. Mixing length parameter

We first check the efficiency of convection. The mean

free path of a photon inside our star is of order of 1 −
10 cm, i.e. our star is opaque and radiative transport of

energy can be treated as a diffusion process. We take

rc = 1500 Mm as the radius of our convective core, the

thermal adjustment timescale of the convective core will

be τK = r2
c/K. The convective timescale is τc = 2rc/vc .
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Figure 8. Snapshots of N2, fV, |Ut| of M213: 7683, M207:
11523, M210: 17283, M284: 26883, all with 1000x L∗ and
1000x K∗.
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For our M207 case, the boosting factor for the radiative

diffusion can be interpreted as decreasing the thermal

conductivity by a factor of 1000. Given that,

τc
τK

=
2K

vcrc

is about 1.06 × 10−4. Therefore, the convection in our

simulations is efficient in transporting excess heat. We

measure the super-adiabatic temperature gradient in our

simulations and hence can derive numerical values of the

standard mixing length parameter α.

In MLT, the total convective flux is

Fconv = 4πr2ρcp
√
p/ρ(∇star −∇ad)3/2α2 (13)

where symbols have their usual meaning, is proportional

to α2 (Prialnik 2000).

From the superadiabaticity in Fig. 9, we see that the

temperature gradient is nearly adiabatic throughout the

convective core (∇star − ∇ad ∼ 10−4). The convective

core is slightly superadiabatic inside 1000 Mm and be-

comes slightly subadiabatic beyond 1000 Mm. This is

where the radial entropy gradient dS/dr becomes pos-

itive and the convective flows start to encounter the

marginally stable stratification. Though the convective

stability criterion indicates the stratification is stable at

1000 Mm and outward, this slightly subadiabatic tem-

perature gradient cannot bring the convetive motion to

a halt. The flows continue before arriving at the very

much more significant entropy gradient at the CB.

The convective flux is propotional to (∇star−∇ad)3/2.

However, the temperature gradient is not superadiabatic

throughout the entire convective core (Fig. 9). If we take

the approach in Porter et al. (2000), redefining the su-

peradiabaticity as∇star−f∇ad where f = 0.999, we find

that the entire convective core is superadiabatic and the

mixing length parameter α, solved from Eq. 13, is in the

range from 0.4 to 1.2 (Fig. 10). This value of f is dif-

ferent from the value 0.98 used in Porter et al. (2000).

Chan & Sofia (1989) suggest that the superadiabatic-

ity might depend on the aspect ratio of the convective

spherical shell and upon the equation of state. We find

that ∇star−∇ad is positive inside 1000 Mm and negative

beyond 1000 Mm for all our different heating rates, but

its magnitude increases with the boosting factor. This is

qualitatively in agreement with the MLT assertion that

the convective flux scales with superadiabaticity to the

power of 3/2.

3.3. Mass entrainment rate

We determine the entrainment rate of the envelope gas

of from above the CB into the convection zone using the

same methodology as in Paper I. As in Paper Iwe define
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Figure 9. The superadiabaticity (∇star − ∇ad) of M201
(1000x heating, 0x diffusion), M204 (1000x heating, 100x
diffusion) and M207 (1000x heating, 1000x diffusion), aver-
aged over 100 dumps and 30 Mm.
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Figure 10. The mixing length parameter squared α2 of
M201, M204, M207 averaged over 100 dumps and 30 Mm.

the entrained mass as the total mass of the envelope ma-

terial within rb. rb is the location of the maximum gra-

dient of fV less one fV scale height. This entrained mass

evolves linearly with time, and one example is shown in

Fig. 11.

Compared to the Pgas only case (M114 in Paper I)

the entrainment rate is 14% smaller when adding Prad

(M201), and decreases by 50% when also adding radia-

tive diffusion (M207).

We estimate the entrainment rate at nominal heating

by extrapolating separately from three sets (no, interme-

diate and high diffusion) of simulations (Fig. 12). The

entrainment rates for no diffusion and intermediate dif-
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Figure 11. The time evolution of the radius of maximal
dfV/dr minus one fV scale height, and the entrained masses
of M201.

fusion are practically the same. The difference between

the entrainment rates extrapolated from these two sets
are due to the uncertainty of the fitting slope.

The extrapolated entrainment rate cannot persist for

a significant fraction of the main-sequence lifetime (§4).

We believe instead that the large entrainment rates that

we observe after our simulations initially establish a

dynamical equilibrium, are the result of thermal non-

equilibrium. We will discuss the development of pene-

trative convection on a longer time scale and the effect

on the entrainment of the resulting subadiabatic temper-

ature gradients within the penetrative region between

the SB and the CB in §4 and §5

3.4. IGWs

One important consequence of radiative diffusion is

damping of IGWs in the stably stratified layers of the

star (Zahn et al. 1997). We study this effect of radiative

diffusion in our model star by observing the wave mo-
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Figure 12. Entrainment rates of simulations (hollow sym-
bols); extrapolated entrainment rates at nominal heating
(solid symbols).

tions in the envelope surrounding the convective core.

Using the same approach as in Paper II, we decompose

the radial component of the velocity field into complex

spherical harmonics coefficients using the SHTools pack-

age (Wieczorek & Meschede 2018). We then perform a

Fourier transform on each coefficient time-series. Then

we use the SHTools package to calculate the power spec-

tral density of the radial velocity oscillations normalized

by degree l for each frequency bin. The time interval be-

tween data dumps in our simulations determines an up-

per limit to the frequencies that we can observe. This

upper limit is about 200 µ Hz for the simulations re-

ported here, corresponding to ≈ 43 min between dumps.

In these simulations, we have located our outer bound-

ary so that the radius of the convective core is about

60% of the boundary radius. The l index of the spher-

ical harmonics gives the number of nodes going along

a meridian from one pole to the other. Hence at the

CB (60% of the maximal radius in our computational

region), with a 11523 grid, we can resolve, in principle,

spherical harmonics up to l = πrCB

4·∆x ≈ 250, where rCB

is the radius of the CB and ∆x the cell width, because

the data we use in this analysis has been averaged over

cubical bricks of grid cells 4 on each side before being

written to disk (Stephens et al. 2021).

As shown by the velocity profile in Fig. 5, the con-

vection in the core is less vigorous (smaller |U |) in high

diffusion. Therefore, the excitation of IGWs (Edelmann

et al. 2019) becomes less efficient due to radiative dif-

fusion. Radiative diffusion damps both the IGWs and

the excitation of IGWs, resulting in the power spectra

we observe.

As shown in Fig. 13 for the radial velocity component,

most of the power of the wave motions is concentrated

at frequencies below the maximum Brunt-Väisälä (BV)

frequency in the stable envelope (see also Paper II). It
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is also concentrated in l′s smaller than 80. Modes with

small-scale structures l > 100 are damped in simulations

with high diffusion, and less so in intermediate diffusion.

Fig. 14 shows the damping effect in terms of power ra-

tio of M204 and M207 to M201. Modes of l > 80 are

reduced in power by more than 95% in high diffusion

and by 50% in intermediate diffusion. However, for the

more important frequencies below the BV frequencies

radiative damping in high-diffusion simulations reduces

the wave amplitudes by a factor 2.5 to 5.

In Paper I, a formula is considered for predicting the

diffusion coefficient that might produce material mixing

in the stably stratified envelope due to IGW-induced

motions. According to that relation the diffusion coef-

ficient should scale with the square of the vorticity in

the envelope, among other factors. In that study, work-

ing with simulations without radiative diffusion, it was

found that this envelope vorticity shows no sign of con-

vergence under grid refinement. The power spectra in

Fig. 14 show that radiative damping of the high l IGW

modes in our high diffusion cases allows the vorticity in

the envelopes of these simulations to converge with mesh

refinement. In Fig. 15, the vorticity in the envelope does

not change when the grid is refined in the presence of

radiative diffusion.

The amount of radiative damping of the IGWs in the

envelope is of interest when we consider the possibility

that these IGWs cause material mixing in the envelope.

The short wavelength waves that are damped substan-

tially, as seen in Fig. 13, have no effect upon the as-

teroseismology observations of the waves at the stellar

surface of massive stars, as they would be located in the

region of white noise (Bowman et al. 2020). However, it

is possible that the short wavelength waves have a signif-

icant impact on the efficiency of material mixing. This

potential for IGW envelope mixing is explored at length

in Paper I. Here we see that the short wavelength waves

are damped by radiation diffusion. It is generally be-

lieved that radiative diffusion can play an essential role

in IGW-induced mixing (e.g. Townsend (1958), Zahn

(1974), Press (1981), Garaud et al. (2017), Paper I).

4. ON THE LONG-TERM EVOLUTION

The entrainment rate implied from linear growth of

the entrained mass is too large to be compatible with

the stellar model and observational properties (§3.3).

Similar to the argument in section 3 of Paper I, if we

assume that this entrainment rate applies for the en-

tire 6.91 × 106 yr main sequence lifetime of a 25 M�
star, a total entrainment of 630 M� would be implied.

This indicates that the entrainment we extrapolate can-

not persist for even a fraction of the main sequence life-
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Figure 13. Spectral power density of ur at 19M� of M201
(top, 1000x heating, 0x diffusion), M204 (center, 1000x heat-
ing, 100x diffusion) and M207 (bottom, 1000x heating, 1000x
diffusion).

time before the star goes through significant evolution-

ary changes. A motivation for the present work is to

investigate whether or not including radiation pressure

and radiative diffusion can result in entrainment that

is more consistent with the main sequence stage of the

stellar model. We have seen in §3 above that this ad-

ditional physics causes the entrainment to decrease by

only about 30% . However, the linear growth of the

entrained mass, the motion of the BV frequency peak,

and the overshoot and undershoot of fluxes at the CB

(Fig. 4) suggest that the simulated star is still in the
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Figure 15. Vorticity of simulations with luminosity and
radiative diffusion enhanced by 1000: M213 (7683), M207
(11523), M210 (17283), M284 (26883). Although the vortic-
ity increases with grid resolution inside the convection zone,
it does not do so in the stably stratified envelope. This be-
havior has consequences for our ability to estimate gravity-
wave-based mixing rates in the envelope using simulations
with only modest grid resolution.

process of thermal adjustment. Nevertheless, the ve-

locity distribution in both the convective core and the

radiative envelope has reached a dynamical equilibrium.

We would like to establish whether or not continued en-

trainment and motion of the CB outward might alter the

character of the flow in such a way that the entrainment

rate might slowly diminish. This possibility is suggested

by the recent work of Anders et al. (2022) investigating

the long-term secular changes driven by thermal adjust-

ment in a simplified Boussinesq, plane parallel, penetra-

tive convection context.

Our explicit numerical technique in PPMstar requires

us to explicitly follow sound wave signals in the low

Mach number stellar flow. We have seen in Paper I and

also here in Fig. 12 that we can overcome this limita-

tion by appealing to empirically observed scaling laws.

By enhancing the luminosity and the radiative diffusion

by a common factor X, we speed up the evolution by

a similar factor (actually slightly larger than X, as we

will discuss later). In Paper I we saw that under these

circumstances the velocities in the convection zone are

enhanced by the factor X1/3. If this enhancement of the

velocities leaves them still at low Mach numbers, we do

not expect the character of the flow to change signifi-

cantly. As a rule of thumb, we might attempt to hold

the resulting Mach numbers below 0.1, for which com-

pressibility effects should be roughly of 1% importance.

A possible consideration is that we might raise velocities

of wave motions in the stably stratified envelope to the

level that makes the induced IGWs modes break. How-

ever, no wave breaking in the stable envelope shows up

in the visualizations of any of our flows. To validate this

technique for speeding up the evolution of our flows, we

can generate a series of simulations at modest grid res-

olution that have different enhancement factors X and

that can be compared over at least an initial time inter-

val of a reasonable length, long enough to go through a

noticeable re-adjustment of thermal structure.

4.1. Key properties of the long-term evolution

We have performed such a series of simulations for the

25 M� star which have enhancement factors X = 1000,

3162, and 10000. These all have a grid resolution of

8963 cells, and all were run for relatively long periods
of 507, 1189, and 1054 days for the star. For the case

of largest X, this time duration is comparable to the

thermal timescale of the simulated part of the 25 M�
star, namely GM2/2RL ≈ 1000d, where R = 2500 Mm

and L = 10000L∗. This should be sufficient for the flow

to relax to a state much closer to thermal equilibrium.

In the top panel of Fig. 16, we show the outward move-

ment of the BV frequency peak. This peak marks the

location within the radial entropy profile where the gra-

dient is largest. This is also the location of the sudden

jump in fV, the fractional volume of the stably strati-

fied envelope gas. It is evident that the outward motion

of the CB is continually slowing down as this simulation

proceeds. The CB is still moving at the last time shown,

but clearly it has slowed considerably.

Looking at Fig. 16, we notice that as the outward mo-

tion of the CB slows, there is an increasingly large region
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inside the CB (for time 17188 h between r = 1600 and

1750 Mm where the BV frequency rises in the absence of

any substantial contribution from the composition gra-

dient. This feature of the later flow structures causes

the convection to be reduced in intensity without caus-

ing additional entrainment. It would seem that this is a

necessary feature for the entrainment rate to be dimin-

ished. The positive entropy gradient that is established

in the growing penetration region between the SB and

the CB, results from a balance between convective mix-

ing of entropy which tends to reduce this gradient, and

the small region of negative gradient of the radiative

diffusion flux, shown in Fig. 17, which tends to build

up the gradient. There is no corresponding mechanism

to counteract the convective mixing of the composition,

because the negative radiative diffusion flux gradient de-

posits entropy and has no effect upon the gas composi-

tion. Hence we see that fV is efficiently mixed, even in

the penetration region.

In Fig. 16, the radiative gradient

∇rad ≡ 3κLP/(16πacGmT 4) ,

the actual gradient∇star, and adiabatic gradient∇ad are

plotted. The radiative gradient is defined as the gradient

required so that all the luminosity is carried outward by

radiative diffusion. The location, at roughly 1400 Mm,

of the SB, where ∇ad = ∇rad, does not change much

during the course of the simulation. The actual gradient

is strictly adiabatic inside the SB at t = 0 by design via

initialization. When the convection is fully developed,

the actual gradient becomes slightly super-adiabatic in-

side 1000 Mm and slightly sub-adiabatic above 1000 Mm

(Fig. 9) and gradually approaches the radiative gradient

above the SB, as seen in Fig. 16. The outward motion

of the CB noted earlier slows down, which is also shown

by the change of the actual gradient with time. The

penetration region, where the convective flux is nega-

tive above the SB, ends at 1850 Mm where the actual

gradient starts to follow the radiative gradient, and the

full luminosity is then carried outward by radiative dif-

fusion alone (Fig. 17).

4.2. The governing equations

Similar to Anders et al. (2022); Roxburgh (1989); Ar-

nett et al. (2015) (see also Korre & Featherstone (2021)),

we attempt to model the convection zone by reduc-

ing the full set of hydrodynamic equations to 1D with

reasonable assumptions. The governing hydrodynamics
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Figure 16. Top: N2 and its compositional component (see
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gradient, adiabatic gradient and actual temperature gradient
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equations are the following:

ρ
∂u

∂t
+ ρ(u · ∇)u=−∇p+ ρg (14)

∂ρ

∂t
+∇ · (ρu) = 0 (15)

T
∂

∂t
(ρS) + T∇ · (ρSu) = ερ−∇ · F (16)

where S is the specific entropy, ε the rate of nuclear

energy generation per unit mass, F the heat flux by ra-

diative diffusion. These equations (Eq. 14 - Eq. 16) are

equivalent to the Euler equations in conservation form

solved by PPMstar. Taking the dot product of the equa-

tion for the conservation of momentum, Eq. 14, with the
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Figure 17. Radiative and convective energy fluxes (multi-
plied by 4πr2) for M252 (10000x) at dump 0, 2000, 4000,
6000, computed from averages over 100 dumps and 120 Mm.

velocity results in the equation for kinetic energy

∂

∂t
(
1

2
ρu2) +∇ · (1

2
ρu2u) =−(u · ∇)p+ ρu · g .(17)

Without any assumption so far, we integrate the ki-
netic energy density Eq. 16 over a thin spherical shell
between radius r and r + dr and determine its rate of
change in time,

∂

∂t

∫∫∫
(r,r+dr)

1

2
ρu2dV =

∫∫∫
(r,r+dr)

(ρu · g − (u · ∇)p)dV

−
∫∫∫

(r,r+dr)

∇ · ( 1
2
ρu2u)dV (18)

where the kinetic energy equation Eq. 16 is applied.
We apply divergence theorem to the second term on the
right-hand side and then approximate the resulting dif-
ference of surface integrals at r and r+ dr with a differ-
ential, and finally approximate other volume integrals
by surface integral multiplied by the shell thickness dr
to get

∂

∂t
(
1

2
ρu24πr2) = (ρ1u · g − (u · ∇)p1)4πr2

− ∂
∂r

( 1
2
ρu2ur4πr2)− 4πr2Φ (19)

as dr → 0, where p = p0 + p1, ρ = ρ0 + ρ1,∇p0 = ρ0g,
subscript 0 denotes the initial hydrostatic state (or base
state) quantities, subscripts 1 denote deviation from the
initial hydrostatic state, ur is the radial velocity, Φ is
the local dissipation rate of kinetic energy into heat,
and the overbars · represent averages over the 4π sphere
at the radius r. Note that we assume that the viscosity
does not enter directly, but only enters through the ki-
netic energy dissipation source term and entropy source
term. We make this assumption because the viscosity
of the stellar gas is one million times smaller than the

thermal diffusivity k/(ρcp), cp is specific heat under con-
stant pressure (the Prandtl number is Pr ∼ 10−6 for the
stellar interior conditions considered here). Still, the vis-
cosity is effective in dissipating the motions in the con-
vection zone, while not dissipating motions elsewhere.
The reason for this effectiveness of a truly tiny viscosity
is that the convection zone is fully turbulent, and the
turbulent cascade brings the motions there down to the
tiny scales where the viscosity can act on them very effi-
ciently to dissipate them into heat. We will discuss how
to determine this dissipation rate in §4.3. Similarly,

∂

∂t
(ρS4πr2) = 4πr2 Φ

T
+ 1

T
∇ · (Γ− F )4πr2

−∂(ρSur4πr2)

∂r
(20)

The nuclear energy generation is defined by the diver-

gence of an energy flux by ∇ · Γ = ερ for convenience.

Eq. 20 and Eq. 19 are the entropy equation and kinetic

energy equation for each spherical shell.

4.3. Reduced equation for kinetic energy and turbulent

kinetic energy dissipation

4.3.1. Reduced kinetic energy equation

In our simulations, the gravity is static and deter-

mined by the base hydrostatic state. Therefore, the ra-

dial component of the base pressure gradient cancels out

with the gravitational acceleration by design∇p0 = ρ0g.

The gradient of the pressure perturbation, however, is

not purely radial. Local high pressures can result in ex-

pansion in all directions. Hence, the pressure gradient

term in the kinetic energy equation, which from the dot

product evaluates to a scalar quantity, gives the work

done by pressure per unit time per unit volume. The

contribution of the horizontal components of the pres-

sure gradient force u ·∇p1 is not negligible, (Fig. 18). In

particular, the peak in u·∇p1 near the CB comes mostly

from the horizontal component of the pressure pertur-

bation gradient. In this region rising gas hitting the CB

causes local high pressure, and the resulting flows are

turned horizontal with large uh · ∇hp1. Thus the pres-

sure gradient force term is significant even in low Mach

number flows and cannot be found in a 1D computation

except through a model, because of the 3D nature of

convection.

The PPMstar code solves the inviscid compressible

fluid dynamics equations, and physical viscosity is not

included. This is reasonable, because the viscosity of

stellar gas is truly miniscule. However, in the convective

core the convection is turbulent. Turbulent dissipation

of kinetic energy is important in the convection zone.

This dissipation occurs via the turbulent cascade, which

excites progressively smaller scales of motion until the



16 Mao et al.

0 500 1000 1500 2000 2500
r (Mm)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

10
27

g
M

m
s

3

1e 4

4 r2u p1

4 r2 1u g
(4 r2 1

2 u2)/ t

(4 r2 1
2 u2ur)/ r

4 r2  from model
dissipation implied

0 500 1000 1500 2000 2500
r (Mm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10
27

g
M

m
s

3

1e 5
4 r2  at dump 2000
4 r2  at dump 3000
4 r2  at dump 4000
4 r2  at dump 5000
4 r2  at dump 6000

Figure 18. Top: work by pressure gradient and gravity
field per unit time per unit radial distance, rate of change
in kinetic energy per unit radial distance, radial derivative
of total kinetic energy flux, dissipation derived from the tur-
bulent dissipation model, measure dissipation rate per unit
radial distance, averaged over 399 dumps centered at dump
6000 of M252; bottom: time sequence of measured turbulent
kinetic energy dissipation of M252.

viscous dissipation scale is finally reached. In our simu-

lations, this dissipation is carried out by numerical trun-

cation error terms, some of which act like viscosity, but

with different dependence upon the spatial scale of the

motion, see Porter & Woodward (1994). The effective-

ness of numerical methods like PPM in simulating tur-

bulent flows in this fashion has been discussed at length

and in detail, with many examples, in Grinstein et al.

(2007). There has been much work on modelling and

theories for turbulent dissipation for stellar convection,

for example, Zahn (1989), Porter et al. (1998), Wood-

ward & Porter (2006), Arnett et al. (2008). From the

averaged kinetic energy equation Eq. 19, the dissipation

0 500 1000 1500 2000 2500
r (Mm)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

10
27

g
M

m
s

3

1e 5

7683 grid

4 r2u p1

4 r2 1u g

(4 r2 1
2 u2)/ t

(4 r2 1
2 u2ur)/ r

4 r2  from model
dissipation implied

0 500 1000 1500 2000 2500
r (Mm)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

10
27

g
M

m
s

3

1e 5

11523 grid

4 r2u p1

4 r2 1u g

(4 r2 1
2 u2)/ t

(4 r2 1
2 u2ur)/ r

4 r2  from model
dissipation implied

0 500 1000 1500 2000 2500
r (Mm)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

10
27

g
M

m
s

3

1e 5

17283 grid

4 r2u p1

4 r2 1u g

(4 r2 1
2 u2)/ t

(4 r2 1
2 u2ur)/ r

4 r2  from model
dissipation implied

Figure 19. Work of pressure/gravity per unit time per unit
radial distance, rate of change in kinetic energy per unit ra-
dial distance, radial derivative for the total kinetic energy
flux, dissipation implied by the kinetic energy equation, dis-
sipation from turbulence model for three resolutions of 1000x
simulations (top to bottom: M213, M207, M210) for dump
2200 averaged over 401 dumps. Inside the SB at about 1400
Mm there is little dependence of these values on grid resolu-
tion. This means that we can get a good measurement of the
implied turbulent kinetic energy dissipation rate using only
a modest grid.
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term can be deduced from the rest of the other terms,

−4πr2Φ =
∂

∂t
(
1

2
ρu24πr2)− (ρ1u · g − u · ∇p1)4πr2

+
∂

∂r
(
1

2
ρu2ur4πr

2) .

(21)

Woodward & Porter (2006) estimates the turbulent

dissipation as a function of density, and turbulent kinetic

energy density for homogeneous, isotropic turbulence,

∂Eturb

∂t
= −A0

1

L0

√
2

ρ
E

3/2
turb (22)

where L0 is the integral length scale which is the scale

containing most of the kinetic energy, a dimensionless

parameter A0 = 0.51, Eturb = 1
2ρu

2, u is the turbulent

velocity. By inserting the spherical averages of density

and velocity magnitude of M252 in Eq. 22 and using

1500 Mm here empirically as the spatial scale that con-

tains most of the kinetic energy, we get an estimate of

turbulent dissipation from the model.

Fig. 18 presents the the terms in the kinetic energy

equation, including the dissipation rate implied by the

simulation from assuming that all the measured terms

plus this dissipation must add to zero, and it also shows

the dissipation rate derived using the turbulence model.

The core convection is not truly homogeneous, isotropic

turbulence. However, its implied dissipation rate ac-

cording to Eq. 21 agrees very well with the turbulent

dissipation model. The same model for turbulent dissi-

pation with a different factor has been reported in Frisch

(1995) and Arnett et al. (2009). The agreement between

the turbulent dissipation model Eq. 22 and the dissi-

pation rate indirectly measured from the simulation is

striking. Note that the turbulent dissipation model does

not apply above the CB, where, by our definition of the

CB, the net convective entropy flux becomes essentially

zero and any motions are no longer turbulent. We there-

fore do not apply the turbulent dissipation model at the

CB and beyond. The dissipation in the convection zone

is a result of the turbulent cascade only. This is con-

firmed by the dissipation from the simulation decreasing

smoothly to zero at around 1835 Mm in Fig. 18. The

dissipation of kinetic energy implied by the simulation

is negligible in the radiative envelope.

The numerical viscosity of the PPMstar method scales

inversely with ∆x3, where ∆x is the cell width (Porter

& Woodward 1994). Each 1.5x grid refinement implies

a decrease of numerical viscosity by a factor of 3.375.

Hence, the results plotted in Fig. 19 show that the ac-

tual dissipation of kinetic energy is independent of the

numerical viscosity, at least on a grid equal to or finer

than 7683 for our simulation. As long as the convection

is fully turbulent and there is an effective mechanism to

dissipate kinetic energy on the smallest scales, we will

end up with the statistically same dissipation rate.

4.3.2. Verification of turbulent dissipation measurement

Three simulations are performed, which restarted

from a late dump (dynamical equilibrium already estab-

lished) of the 1000x heating and 1000x radiative diffu-

sion cases with 3 resolutions (M213, M207 and M210).

Volume heating and radiative diffusion are turned off

from the beginning of these three new runs. The intent

is to measure the decay rate of the kinetic energy in the

convective core, which should be the same as the turbu-

lence dissipation rate. The kinetic energy per unit vol-

ume is plotted about every 8.5 hours in Fig. 20. Before

the nuclear heating is removed, we have a slightly con-

vectively unstable stratification. The unstable stratifi-

cation continues driving the convection for a short while

before it is eliminated. Hence, the decay of kinetic en-

ergy is barely noticeable in the first couple of dumps.

The total decay rates of kinetic energy are estimated

from the first 60 hours to be 20.5%, 17.8% and 19.3%

(from low to high resolution) of the luminosity. Again,

we do not see kinetic energy dissipated in the stable en-

velope.

From the rundown experiment with the three resolu-

tion cases, we conclude that PPMstar converges on the

behavior of the decaying kinetic energy in the context

of no driving. Hence, again we see the dissipation rate

is insensitive to the numerical viscosity. Because the

initial slight super-adiabatic gradient converts gravita-

tional potential energy to kinetic energy during the first

few dumps, which acts as a source that affects the rate

of change in kinetic energy, the change in kinetic en-

ergy is not caused by turbulent dissipation alone. In

this respect convection differs from the case of uniform

turbulence, where we can make a clean measurement of

the dissipation just by stopping the stirring of the flow.

Similarly, we obtain the turbulent dissipation for a

case with a higher luminosity enhancement factor by

measuring the rate of change in kinetic energy directly

from a simulation that begins from a late-time data

dump of our long-time run M252. This 10000x heat-

ing simulation was restarted from 20062 hours with the

volume heating and radiative diffusion turned off. The

motion in the convective core dies down rapidly. The

dissipation rate is measured from 20062 hours to 20082

hours assuming that it is constant in time at each ra-

dius. The decay rate of kinetic energy and the dissipa-

tion rate predicted by the turbulent model using 1500

Mm as L0 are shown in Fig. 20. Because we have started

this run-down experiment from a very late time, we get
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Figure 20. Top: time sequence of kinetic energy density ev-
ery 8.5 hours for the rundown experiments of M210: 17283,
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20062 to 20082 hours measured from the rundown simulation
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outside the convection zone.
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an indication in Fig. 20 of the behavior of the dissipa-

tion rate in the penetration region beyond the SB when

the flow is close to thermal and dynamical equilibrium.

4.3.3. Reduced entropy equation

Now we proceed to investigate the reduced entropy

equation to see if it leads to useful 1D modelling that

has predictive power on whether the star is in equilib-

rium or how big the convective penetration region should

be. There is no approximation in deriving Eq. 20. The

entropy equation simply states that the rate of change of

entropy in a spherical shell is the sum of turbulent dissi-

pation of kinetic energy, heating and cooling of nuclear

burning and radiative diffusion, and the advective flux

of entropy. To further simplify, we assume the diver-

gence of the radiative diffusion is mostly radial, which is

not strictly true because the adiabatic motion will heat

or cool fluid parcels, and then the heat flux can have

a non-zero horizontal component. The second term on

the right-hand side then becomes

1

T

∂(Γr − Fr)4πr2

∂r
≡ 1

T

∂(Fnuc − Frad)

∂r
.

The advective entropy flux mostly cancels with the

nuclear heating plus the radiative flux, leading to a neg-

ligible time rate of change in the entropy (see Fig. 21).

The dissipation per unit radial distance is small com-

pared to the derivative of advective entropy flux multi-

plied by the temperature and to the ∂(Frad − Fnuc)/∂r

term, but not small compared to the measured time rate
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of change in the entropy. Of course, for a simulation in

perfect equilibrium the latter would be zero.

As was pointed out in §3.2.4, the superadiabaticity

changes its sign at 1000 Mm. Beyond that location, the

stratification is slightly convectively stable, but there is

still convection. The convective motions are not signif-

icantly damped by the tiny amount of subadiabaticity

between 1000 Mm and the CB until the gas is subjected

to a significant stabilizing force in the penetration region

beyond the SB. The time rate of change in kinetic energy

and entropy is very small compared to the source terms

and the flux terms. This by no means implies, however,

that the star is in thermal equilibrium, because small

changes over long times are seen in our long duration

run M252 to have significant effects.

4.3.4. Accelerating stellar evolution by enhancing
luminosity and radiative diffusion

In the work reported in Paper I and in earlier work,

we have applied luminosity enhancement to increase the

fluid velocity. The convective velocity is greater with lu-

minosity enhancement (Fig. 7). We then extrapolate the

entrainment rate to nominal heating using the scaling re-

lation we observe in a series of runs with different lumi-

nosity enhancements. Enhancing the radiative diffusion

accelerates the thermodynamical evolution. Hence, en-

hancing both the luminosity and diffusion by the same

multiplicative factor accelerates both convection and

thermal adjustment.

Comparing the vertical scales of Fig. 19 and Fig. 18

suggests that the terms in the kinetic energy equation

scale linearly with the boosting factor. The scaling of

convective velocity with luminosity (Fig. 7) and the tur-

bulent dissipation model Eq. 22 also imply that the tur-

bulent dissipation scales linearly with the luminosity en-

hancement. Hence, the turbulent dissipation, F , and

Γ in Eq. 20, all scale linearly with the boosting factor

L/L∗. The time rate of change in entropy is driven to

become very small on the thermal timescale if the star is

nearly thermally relaxed. Then the entropy flux has to

scale with the boosting factor, as the rest of the terms in

the entropy equation do so, and their sum, the time rate

of change of entropy, is nearly vanishing. This behavior

is also demonstrated by the simulation, as can be seen in

Fig. 21. Hence, the rates of change with time of kinetic

energy and entropy are small when the stratification is

close to equilibrium, and this implies that the rest of the

terms in the kinetic energy and entropy equations must

scale with the enhancement factor. Naturally, we would

hope the rate of change with time also scales linearly

with the enhancement factor, so that we can reasonably

accelerate our simulations by boosting luminosity and

thermal conductivity by the same factor.
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Figure 22. N2 of M250 (3162x) and M252 (10000x) at three
different times when they proceed to the same location; Bot-
tom: total radiative heat flux of M252 (10000x) and M250
(3162x). Considering that N2 depends upon the local en-
tropy gradient, it is remarkable how similar the results of
these two runs are at these times, especially considering the
more than 3 times greater computational cost of the M250
results.

From the perspective of simulation, we present evi-

dence here that stellar thermal evolution can be accel-

erated by enhancing the luminosity and the radiative

diffusion by the same factor. The accelerated evolution

is meaningful only if the simulation arrives at a simi-

lar stratification within a shorter time. We see in the

bottom panel of Fig. 22, the convective and radiative

fluxes of the two higher luminosity runs plotted at times

inversely proportional to their enhancement factors X.

These fluxes agree very closely, which is consistent with

our intent that we can speed up the flow evolution by

enhancing luminosity. Fig. 22 demonstrates that boost-

ing the luminosity by a factor of 3.162 accelerates the

evolution by a factor of about 3.6, after eating away the

initial CB profile and later establishing a similar pro-
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file as a spherical average of a dynamic 3D flow. The

rate of thermal relaxation, with the mixing as one of

the processes, does not necessarily scale precisely with

the luminosity. This can be observed by comparing en-

trainment rates for M207 and M209 at 1000x and 3162x

enhancement (Table 1). The ratio of their entrainment

rates is 1.36M� yr−1/0.369M� yr−1 ∼ 3.69.

We have shown in Fig. 16 that the outward motion

of the convective boundary, as indicated by the BV fre-

quency peak location, slows greatly at late times in our

run M252 with the luminosity and radiative heat con-

duction both boosted by a factor of 10,000. We have

also argued that the simulation data suggest that the

slowing of this outward motion occurs as a result of the

development of a thin region just inside the composi-

tional jump at the boundary in which there is a positive

entropy gradient without any significant compositional

change. This entropy gradient is maintained despite

convective mixing by the local heat deposition caused

by the negative radial gradient of the radiative heat flux

as it approaches the full stellar luminosity value from

above. The volume-rendered vorticity images in Fig. 23

give us a sense of how the convection flow changes as

it approaches equilibrium. At early times, as seen in

the image at top left, the dipole circulation pattern has

the upwelling flow strike the composition jump at the

convective boundary, become deflected, and travel along

the boundary for a considerable distance. The snapshots

in Fig. 23 cannot convey it, but indeed at early times

the dipole circulation maintains its orientation and flows

along the convective boundary for significant amounts of

time before this orientation changes and the upwelling

strikes the boundary in a different location. The dipole

direction wanders constantly, but at early times there is

a continual transport of gas from above the convective

boundary, with this gas collecting at the location where

the opposing flows along the boundary meet and plunge

back toward the center of the star (about 5 o’clock in

the top-left image in Fig. 23). At the much later times

shown in the three later images in Fig. 23, the dipole cir-

culation pattern is changing its direction more rapidly,

and it is causing the upwelling gas to actually meet the

compositional change at the convective boundary only

briefly and occasionally. This means that the convection

flow is far less effective at these late times in bringing

stably stratified gas into the convection zone. In fact,

the flow at this time is much more like the standard pic-

ture of rising plumes overshooting or penetrating into a

stably stratified region. In this core convection flow, we

have mainly a single ”plume” provided by the dominant

dipole circulation, but it does appear to overshoot from

time to time and at constantly varying locations along

the convective boundary. This feature of the core con-

vection flow suggests that for a convective shell, where

the largest significant eddies are not global in scale, we

might well expect the same forces working on the flow as

it approaches equilibrium to produce the phenomenon of

occasional identifiable plumes overshooting into a region

of a stable entropy gradient, as has been observed in the

simulations of Baraffe et al. (2017); Pratt et al. (2017,

2020); Korre & Featherstone (2021).

5. HOW TO FIND A CONVECTION ZONE WITH

PENETRATION IN EQUILIBRIUM

The jumps in fV, |U | are shown in the panels of

Fig. 24, and Fig. 25 shows entropy advective flux and en-

tropy profiles, with the CB location indicated by the lo-

cation of vanishing flux. We see that at the CB, the fluid

motions essentially stop, even though they do change

character as we approach the CB within the thin region

of the sharp entropy jump, as has been noted in Paper I.

In Fig. 25, we show data from run M252, our case with

X = 10000. Even at the last time shown, the CB is still

moving outward, but it has clearly slowed considerably.

From §4 discussing the simulation on the thermal

timescale, we find that (1) penetrative convection de-

velops above the SB (Fig. 25), (2) the entrainment de-

creases significantly at later times as the penetration re-

gion develops (Fig. 25 and Fig. 26), (3) there is a positive

entropy gradient that develops in the penetration region

(Fig. 25), (4) the convection is slowed down by the posi-

tive entropy gradient before it reaches the compositional

gradient, which suppresses the entrainment significantly.

We note that the fV jump acts as a relatively hard bar-

rier to the convection flow at every stage of the enlarge-

ment of the penetration zone, and it is undeniably dy-

namically important. It continues to move outward until

the return of the overshooting radiation diffusion heat

flux to the full luminosity is able to heat the gas in the

penetration zone sufficiently to nearly arrest its outward

motion. In the near equilibria shown in Fig. 27 it is clear

from the curves plotted for the convective entropy flux

that very little convective transport is still happening

at the latest times shown in the range of radii in which

fV increases rapidly. All these observational properties

suggest that our model star is approaching equilibrium

asymptotically. A natural question to ask is whether or

not we can find the ultimate equilibrium state, a con-

vective core with penetrative convection in thermal equi-

librium, that our simulation is approaching. At present,

we are prevented from doing this by simply running our

simulation further in time. However, we would like to

explore the question of whether we can predict what the

final equilibrium state is likely to be.
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Figure 23. Four views of the vorticity magnitude in the far hemisphere of a non-rotating main-sequence stellar model of 25
solar masses are shown (M252, 10000x L∗ & K∗). The simulation was computed on a grid of 8963 cells, and in this simulation
the luminosity of the star was boosted by a factor of 10000 in order to speed its approach to a dynamical and thermal equilibrium
state. The image at the top left shows the star at time 12.06 days, when the dipole circulation pattern characteristic of core
convection has become well established. The other three views of this same stellar model are shown at a much later time, when
the flow has developed a much larger region of penetrative convection above the SB. Going clockwise from the top-right, these
three later views are at times 732.41, 732.76, and 737.66 days. In the early flow, we see that the classic core-convection dipole
circulation hugs the CB closely over about a quarter of the extent of this circle. The flow separates from the CB where the
prominent shear layers, marked by very strong vorticity (shaded yellow), bend inward from the boundary. At top right, we see
the flow much, much later. The convection zone has expanded substantially, and the dipole circulation ”contacts” the CB only
along a very small segment, from which it immediately separates. Just 0.35 days later, at bottom right, the dipole circulation
has left the CB entirely, leaving a thin layer of somewhat higher entropy gas between it and the boundary. In the image at the
bottom left, despite the vigor of the dipole circulation flow, we see no contact with the CB, but we do see at about 2 o’clock,
a strong gravity wave interfacial mode propagating along the CB, with a node in its flow pattern right at the CB radius. Our
model of the convection zone identifies the thin, higher-entropy layer of convection zone gas right next to the CB as a key feature
of this near-equilibrium penetrative convection structure. This layer is generated by local heating from a declining radiative
diffusion heat flux that is approaching the total luminosity in this region from above. Our analysis indicates that the size of the
convection zone, the location of the SB, and the structure of the penetration region does not change with the luminosity boost
factor.

.
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Figure 24. Spherical average of convective velocity and fV,
averaged over 200 dumps, and over 20 radial points (equiva-
lent to 116 Mm) twice, of M252 (10000x L∗ & K∗) at dump
0, 2000, 3000, 4000, 5000, 6000. The location of the SB is
denoted by the thick vertical line around 1415 Mm which
does not move much during the simulation. The CB for all
dumps except dump 0 are vertical lines at 1780 Mm, 1850
Mm, 1880 Mm, 1900 Mm, 1910 Mm. The CBs are identi-
fied by the locations where the total convective entropy flux
levels off, see Fig. 25.

5.1. Roxburgh criterion

The evolution of our run M252, with X = 10000,

shows us that the convection flow, given sufficient time,

develops a significant penetration region beyond the SB.

In this region the total radiative flux exceeds the to-

tal nuclear heating rate, and this excess is compensated

for by a negative convective flux. For carrying out 1-

D stellar evolution simulations, we would like to have

a model of convection that includes such a penetration

region and that relates its extent to other parameters

of the problem. Anders et al. (2022) addressed this

problem by relating their simplified convection model
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Figure 25. For run M252, spherical average of total entropy
flux averaged over 200 dumps, and of entropy per unit mass,
averaged over 200 dumps, and over 20 radial points twice, at
dump 2000, 3000, 4000, 5000, 6000.

to the arguments made by Roxburgh (1989). Roxburgh

(1992, 1989) developed a constraint that a convection

zone in an equilibrium state should satisfy. This con-

straint, known as the Roxburgh criterion,∫ rc

0

(Frad − Fnuc)
1

T 2

dT

dr
dr = 0 (23)

where Frad(r) is the total radiative energy flux, Fnuc(r)

is the total nuclear energy flux at radius r, is an equation

of the volume integral over the convective core bounded

by the CB, at radius rc, derived from the time evolution

equation for the entropy. In brief, the entropy equation

is integrated over the spatial extent of the convection

zone, which in our case is from the center of the star

out to the CB. Roxburgh assumed that the vector ve-

locity vanishes everywhere on the spherical surface that

we call the CB. Roxburgh assumes time-stationary con-

vection, and of course our continued, although small,
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Figure 26. Entrained mass as a function of time of M252.
Over the course of this long simulation, the entrainment rate
has dropped by about a factor of ∼ 17, although it has not
fallen to zero when the simulation was stopped. The entrain-
ment rates are measured from dump 1000 to 2000, and from
dump 5000 to 6000 (durations of 278 h)

Table 2. Numerical values of Roxburgh integral derived
from spherical averages, and temperature weighted integral
of dissipation measured from kinetic energy equation of run
M252. Both are in units of 1018 g Mm2s−3K−1).

Dump
∫ rc

0
(Frad − Fnuc) 1

T2
dT
dr
dr

∫
V

Φ
T
dV rfV=0.5/Mm

2000 0.280 0.225 1800

4000 0.258 0.216 1872

6000 0.242 0.213 1950

entrainment invalidates this assumption. Nevertheless,

it is possible that the Roxburgh constraint Eq. 23 is

nearly satisfied for our runs.

We examine the integral of the entropy equation with-

out the assumption of being dissipationless (Eq. 24),

by inserting the radial profiles of temperature, entropy,

measured turbulent dissipation rate (by subtracting the

sum of all other terms in the kinetic energy equation

from zero) and radiative flux of M252,∫ rc

0

(Frad − Fnuc)
1

T 2

dT

dr
dr =

∫
V

Φ

T
dV (24)

where Φ is the turbulent dissipation rate. The devel-

opment of penetration and the resulting extended re-

gion of turbulence indicate that the convection is driven

towards equilibrium but is not there yet (see the equal-

ity/inequality of the Eq. 24 with Table 2). Nevertheless,

illuminated by the evolutionary trends of M252, we can

devise a means of producing the final equilibrium state

for this particular star, which we set out in §5.3.

5.2. Entropy flux

We hope to devise a method to find the equilibrium

convection zone structure that can be used in conjunc-

tion with 1D stellar evolution codes. Because u · ∇p1

is inherently 3D by nature, we choose to work with the

entropy equation, reducing it to 1D with assumptions

that might be only minimally violated in 3D. Our simu-

lations are initialized from the 1D stratification specified

by MESA. The 1D MESA model is in hydrostatic and ther-

mal equilibrium, because the nuclear timescale is much

greater than either the thermal timescale or the dynam-

ical timescale. By assuming a time-stationary state and

spherical symmetry, because we are interested in the ul-

timate equlibrium state, and ignoring non-radial radia-

tive heat flux, the entropy equation for every spherical

shell becomes

∂(ρSurr
2)

∂r 4π = Φ
T 4πr2 + 1

T
∂(Fnuc−Frad)

∂r . (25)

In this equation we use the assumption of a steady state

with zero time derivative to enable us to solve for the

convective flux term on the left. This term would be

quite difficult to obtain through modeling, using mixing

length arguments, but the terms on the right in this

equation, at least the second such term, are easy to pin

down in a 1-D computation. The nuclear heating input

and the radial temperature and opacity structure come

directly out of a 1-D simulation. The kinetic energy

dissipation rate, which appears here as a heat source,

does not. However, we have seen that we can solve for

it using the kinetic energy equation in a similar fashion,

as we will explain below.

5.3. A procedure to compute the extent of the

penetration zone

In discussing the long-time behavior of our simulations

of core convection, we found it notable that as the con-

vective penetration region beyond the SB very slowly

was extended outward, with the accompanying inges-

tion of stably stratified gas from the radiative envelope,

the structure of the convection flow inside the SB radius

changed hardly at all. This can be seen in Fig. 17 and

Fig. 18. It is reasonable that this should be the case, be-

cause the region of convective penetration is not so very

large in comparison to the convection zone as a whole.

The extent to which the structure inside the SB does

not change over the course of our long 3-D run M252

can also be assessed by examining the plots in Fig. 24

and Fig. 25. In these plots, the radii shown begin just

inside of the SB, but it is nevertheless clear that for all

the times shown the behavior near the SB is very closely

the same. This insensitivity of the flow structure inside

the SB to the development of the convection structure
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Figure 27. Top and middle: convective/radiative energy flux with fV and entropy gradient normalized to 1 at dump 0, 2000,
4000, 6000 (0, 5729, 11458, 17188 h). Bottom: total entropy flux and the measured dissipation rate per unit radial distance.
All are averaged over 200 dumps, and over 20 radial points twice except for dump 0.

outside of it allows us to pin down the kinetic energy

dissipation rate, shown in Fig. 18, inside the SB in a

practical manner.

We determine the unknown dissipation rate, Φ(r), by

performing a short-duration 3-D convection simulation

on a modest grid. From the data shown in Fig. 19, we

see that, at least with PPMstar, a grid of 7683 cells is

sufficient. We begin with the 1-D structure produced by

a stellar evolution code, use it to initialize our 3-D grid,

and then run the simulation through its initial transient

adjustment to 3 dimensions. After producing enough

data to give us good time averages over multiple large

eddy turn-over times, we can stop the run and measure

the time-averaged radial profiles of the terms in the ki-

netic energy equation, which are shown in Fig. 19. If

we have carried the run far enough in time, we will be

able to verify that the time average of kinetic energy at

each radius is nearly zero, as can be seen in Fig. 19. We

can then use this vanishing of time derivatives to solve

for the kinetic energy dissipation rate, Φ(r), using equa-

tion Eq. 21. This procedure allows us to build a first-

principles model of the convection zone with its pene-

tration region without involving paramters that would

need to be calibrated against observations.

One might think that pinning down our 1-D model

of the convection zone by solving a 3-D flow problem

invalidates the advantage of a 1-D model. This might be

true if we had to perform 3-D simulations often in order

to carry a stellar model from the zero-age main sequence

through its lifetime as a star. But this is unlikely to be

the case. We can parameterize Φ(r) and match that

form to the measured result from a 3D simulation only

at wide intervals in time during the star’s evolution. A

very simple model would relate Φ(r) to |u(r)| through

the turbulence model formula, Eq. 22, get |u(r)| from

the standard MLT estimate taken at a radius well inside

the SB, and apply that value everywhere inside the SB.

Fitting this to the 3-D simulation results would involve

some constant of order unity, which could be checked

and rechecked at regular time intervals against new 3-

D simulations. On modern computing equipment, 1-

D stellar evolution simulations cost very little, so that

adding to that cost a few modest 3-D simulations should

not be a problem. In any case, a table of results could



3D simulations of massive main-sequence stars III 25

in principle be generated and made available over the

Internet.

With the convection flow pinned down inside the ra-

dius of the SB, our challenge remains to extend it out-

ward to the CB. To do this, we can be guided by the

long-time behavior that we have described in the pre-

vious section. In Fig. 24 and Fig. 25 we see how the

convection flow slowly develops as it approaches an equi-

librium structure. First, Fig. 18 shows how Φ(r) changes

during this process. Its value at the SB stays roughly

constant in time, while its value at the CB is, of course,

zero. In addition, we can see that demanding that

∂Φ/∂r vanish both at the SB and at the CB is a very

reasonable constraint. We may then approximate Φ(r)

between the SB and CB as a cubic polynomial, in which

case it is uniquely determined. To get this function to

approach zero more gradually, we could additionally de-

mand that its second radial derivative vanishes at the

CB. Then we would need to make this function a quartic

polynomial. In this region, Φ(r) will be small relative to

other terms, but it will nevertheless play an important

role, because it is never negative.

The terms of the entropy equation are plotted in

Fig. 21. In the absence of a long-duration 3-D simu-

lation, it would be very hard to guess the functional

form of −4πT∂(r2ρSur)/∂r, which is plotted in Fig. 21.

However, we know that in the absence of a time deriva-

tive of ρS, this gradient of the convective entropy flux

must cancel the sum of Φ and the gradient of the radia-

tive heat conduction flux (Eq. 25). We have a model for

Φ, and if we can provide a model for ∂(Fnuc − Frad)/∂r,

then we can simply solve for the convective entropy flux

using Eq. 25.

We know the value of Frad and its first 2 derivatives

at the SB, and we know that Frad must equal L, by

definition, at the CB. Looking at the results of our sim-

ulation shown in Fig. 25, it seems reasonable to assume

that the first two radial derivatives of Frad vanish at the

CB. If we demand that Frad be a quintic polynomial

between the SB and the CB, these 6 constraints deter-

mine it uniquely. This determination then is enough to

allow us to solve for the convective entropy flux term,

−4πT∂(r2ρSur)/∂r, between the SB and CB. Of course,

to do this, we must first guess a location for the CB. We

cannot just make any guess for the CB location. Our

model assumptions are sufficient to determine the terms

in the entropy equation, Eq. 20, in its steady-state equi-

librium form, which is Eq. 25. We need one further

condition in order to distinguish the CB radius from all

the possible guesses for it that we might make.

The final constraint that we need to impose in order

to fully determine our 1-D model of the full convection

zone is the demand that the convective entropy flux at

the CB must vanish. To check whether this constraint

is satisfied for any particular choice of the CB location,

we can begin at the central fluid state at r = 0 that

we get from the 1-D stellar evolution code, and we can

integrate outward in radius along an adiabat to the SB,

remaining in hydrostatic equilibrium at each step. In

this process, we keep the composition, fV, constant, be-

cause the convection zone is well mixed inside the SB.

At each radius, the isentropic, hydrostatic fluid state de-

termines both Fnuc and Frad. Because we know Φ(r), as

described above, we may solve for −4πT∂(r2ρSur)/∂r.

This convective entropy flux gradient allows us to de-

termine the flux itself, ρSur, at our radius, if we have

produced it at the previous radial step outward. In this

process, we can determine the full fluid state and also

the flux ρSur at the SB

The conditions of our model, as just described above,

are sufficient to carry this integration process onward

to the CB if (1) we know the CB location and (2) we

know fV(r) between the SB and the CB. We know that

fV cannot be constant in this region, because it must

be unity at the CB. Efficient convective mixing keeps

fV at a constant value below unity inside the SB, but

inside the penetration region this mixing efficiency must

be diminished progressively as the CB is approached.

We appeal to the results of our 3-D simulation shown

in Fig. 24 and Fig. 25 to produce a model for fV(r).

We focus particularly on the later times shown in that

figure. It is clear that the sudden, but still smooth jump

in fV comes right at the end of the penetration region,

and this jump is complete at the CB. It is also clear

that there is a substantial smooth rise in entropy, S,

immediately before the jump in fV begins. That rise

in entropy is caused by local heating due to the return

of the radiation heat conduction flux, Frad, to the full

luminosity value, L. We will assume, and it is of course

an assumption rather than an established fact, that the

jump in fV begins at the point where this local heating

rate has its maximum, hence where ∂2Frad/∂r
2 vanishes

and also ∂Frad/∂r is negative. Between this point, which

we call rfoot, and the CB, at rCB, we assert that the

shape of fV(r) is that of the sine wave between values

of its argument of −π/2 and π/2. Thus, we have the

expression for fV(r) as

fV(r) = 1
2 [1 + sin(π r−rfoot

rCB−rfoot −
π
2 )](1− fV(rSB))

+fV(rSB) (26)

where rfoot < r < rCB. Now it is possible to use a

Newton iteration over the CB radius rCB to converge

upon a model of the convection zone including its pene-
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tration region, and that model will satisfy the following

assumptions and constraints:

• The central state of the gas is given by the cen-

tral state produced by the 1-D stellar evolution

code, with a composition, fV, that reflects any ad-

ditional entrained material from above the CB.

• The state of the gas inside the SB has the same

entropy and composition as the state at the center,

and it is in hydrostatic equilibrium.

• The kinetic energy dissipation rate, Φ(r), inside

the SB is determined from a short-duration, mod-

est grid, 3-D simulation that has achieved dynam-

ical equilibrium, in that the time derivative of the

kinetic energy everywhere inside the SB essentially

vanishes.

• Inside the SB, where by definition Frad = L, both

Fnuc and Frad are determined by the fluid state.

• Inside the SB, the convective entropy flux,

4πr2ρSur, satisfies Eq. 25.

• Between the SB and the CB, Φ(r) is the unique

quartic polynomial continuous at the SB with van-

ishing radial derivative there and vanishing at the

CB, with vanishing first two radial derivatives

there.

• Between the SB and the CB, Frad(r) is the unique

quintic polynomial that is continuous and twice

continuously differentiable at the SB and which

equals L with vanishing first two radial derivatives

at the CB.

• Between the SB and the CB, Frad(r) has its min-
imum (negative) radial derivative at r = rfoot.

• Between rfoot and the CB, the composition, fV,

rises smoothly from its constant value inside rfoot

to unity at the CB with the shape of a sine wave

between its argument values of −π/2 and π/2, see

Eq. 26.

• Between the SB and the CB, the convective en-

tropy flux, 4πr2ρSur, satisfies Eq. 25, and it van-

ishes at the CB.

When stepping outward from the SB to the CB, we

replace the isentropic condition we used to arrive at

the SB with the demand that a hydrostatic fluid state

must also have the prescribed radiative heat conduction

flux. We have found such model solutions, starting from

the state given by our M252 long-duration run at the
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Figure 28. Top: dissipation measured from M252 at dump
6000 and interpolated beyond the SB; bottom: entropy flux
implied by the predicted hydrostatic equilibrium stratifica-
tion using the measured dissipation inside the SB and the
interpolated dissipation above the SB. The 1st prediction
uses central density, entropy and fV and turbulent dissipa-
tion below the SB at dump 2000, 2nd at dump 4000, 3rd at
dump 6000.

three times shown in Fig. 24, and these model convec-

tion zone equilibrium structures are shown in Fig. 28.

In Fig. 30 (top panel), we show the three model con-

vection zone equilibrium structures that we arrive at

starting with states in our three runs, M250, M251, and

M252, when their peak values of ∂fV/∂r are all located

at nearly the same radius. These three runs have lu-

minosity enhancement factors of 1000, 3162, and 10000,

and we compare their implied equilibria at times 716,

202, 48 days. We see that the implied equilibria are

very nearly identical, which supports our discussion of

the linear scaling with luminosity enhancement factor of

the terms in the kinetic energy and entropy equations.

For the three implied equilibria to agree, we must also

have the width and location of the compositional jump
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Figure 29. Actual temperature gradient (Eq. 10) implied
by the predicted hydrostatic equilibrium stratification using
the measured dissipation inside the SB at dump 6000 and
the interpolated dissipation above. The fV transition starts
from 185 Mm (1st), 275 Mm (2nd, used in the procedure of
this work) and 385 Mm (3rd), where the middle one is the
location of the smallest derivative of Frad in the penetration
zone.

in fV agree. That this agreement between the fV pro-

files is very nearly observed in the simulation results at

these times is shown in Fig. 30 (bottom panel). We note

that in Fig. 30 the fV values used come from radial pro-

files in which we have performed no time averages or

moving spatial averages that could broaden the compo-

sitional jumps so that they become more similar. The

closely matched width and shape of the fV jumps in

these three runs with luminosity boosts ranging over a

factor of 10 is remarkable. The rise in fV from 0.1 to 0.9

in these radial profiles takes 6 to 7 grid cell widths. Our

PPB moment-conserving advection scheme in PPMstar

is able to describe and maintain sharper rises than this,

but it is nevertheless possible that this 6-cell width rep-

resents a minimum that is produced by the combination

of the PPB scheme and our method for producing a ra-

dial profile from data on our Cartesian grid. That such

a doubt exists underscores the fact that the composition

jump right inside the CB in our simulations and in our

model is a thin feature, and therefore if the model does

misrepresent its thickness, it cannot do so by very much.

We also note that although one might imagine that this

entire procedure could be simplified by approximating

the kinetic energy dissipation rate with zero everywhere,

we find that doing this makes it impossible to find a so-

lution satisfying all these simultaneous constraints.

5.4. Comparison of the simulation results with the

equilibrium model state that they imply
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Figure 30. Entropy flux (top) implied by the predicted
hydrostatic equilibrium stratification using the measured
dissipation inside the SB and the interpolated dissipation
above the SB at three times corresponding to dumps 400,
1700, 6000 when fV gradient peaks (bottom) are located at
about the same location for M252 (1st, 10000x), M250 (2nd,
3162x), M251 (3rd, 1000x). These entropy flux curves are all
the same to within 1.0% tolerance when they are all scaled
by their luminosity enhancement factors of 10000, 3162, and
1000.

In this section, we compare the results of our long-

duration simulation, M252, with the equilibrium model

state that they imply at two times, dumps 2000 and

6000. The first time comes relatively early in the sim-

ulation, and the second very late. The simulation re-

sults and their implied equilibrium models are shown in

Fig. 31. At each of these two times, we plot the radiative

heat conduction flux, normalized by the total luminos-

ity (including the enhancement by a factor 10,000 in this

simulation). We also show the radial profile of fV and

of the entropy S. The simulation results are indicated

with solid lines, while the projected equilibrium models

are shown with dashed lines.
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Figure 31. The thermal equilibria predicted by the proce-
dure and the stratifications of M252 (10000x L∗ & K∗) at
dump 2000 (top) and 6000 (bottom).

It is notable how closely the projected equilibria at

these well separated times agree. The positions of their

convective boundaries agree quite closely, as do their

compositional jumps. The entropy curves differ a bit,

because the central compositions at these two times dif-

fer significantly. In the equilibrium projected from the

later time, the compositional jump is broadened from its

width in the simulation, and a very significant rise in the

entropy inside the foot of this jump causes the entropy

signature of the composition jump to become nearly lost

in a large, smooth increase. The change in the entropy

structure from the simulation result to the implied equi-

librium is significant, but the associated change in the

radiation diffusion heat flux appears to be a rather minor

adjustment. When we consider the earlier of these two

times shown in Fig. 31, changes in the entropy structure

are much less severe in the implied equilibrium beyond

the convective boundary. Once again, we see that the

implied equilibrium model inserts quite a substantial en-

tropy rise inside the foot of the compositional jump. As

we have pointed out earlier, this feature causes the con-

vection to diminish before the compositional change is

encountered, so that mass entrainment rate reduces to

nearly zero.

6. CONCLUSIONS AND DISCUSSION

6.1. Discussion

One might ask if the above 1-D model of the convec-

tion zone does not simply exchange the mixing length

theory’s (MLT’s) arbitrary paramters and assumptions

with other, equally arbitrary parameters and assump-

tions. We have been guided by our simulations of core

convection for a single stellar model near the beginning

of its main-sequence life. Nevertheless, this single stel-

lar model poses significant challenges for a 1-D model

description. The convection flow is non-local, in that it

is dominated by a huge dipole circulation pattern. Also,

our 3-D simulations show that a region of penetrative

convection develops above the SB in which the radiative

energy flux exceeds the star’s total luminosity. We be-

lieve that an advantage of our 1-D model, as presented

in the previous section, is that the assumptions we make

do not require us to calibrate the value of an assumed

constant of order unity against observations of the stel-

lar surface with which this constant might be only ten-

uously related. We do require the determination of the

kinetic energy dissipation rate, Φ(r) in the convection

zone, but this does not require calibration against any

observations. Instead, we determine this function from

theory alone, using the assumption of dynamical equi-

librium, the kinetic energy equation reduced to 1D, and

a 3-D stellar hydrodynamics code (such as, for example,

any in the recently published code comparison study,

Andrassy et al. 2022).

We also assume various smoothness constraints on un-

known functions inside the region of convective pene-

tration, but we believe that these assumptions are quite

natrural. We do assume what we believe is a reasonable

location and shape for the jump in composition that

must occur very near to the CB. We find very little de-

pendence of our resulting model on where we place rfoot,

the radius at which our assumed sine-wave fV radial pro-

file begins. In Fig. 29, we show the projected equilibrium

state using data from run M252’s dump 6000 for 3 differ-

ent choices of rfoot, with the middle one being the one

we recommend for the model. Perhaps the placement

of rfoot would matter more at a later stage of evolu-

tion, when the jump in fV causes greater change in the

composition of the gas. We have also shown in Fig. 30.

that the breadth and shape of this rapid increase of fV

changes little as the luminosity enhancement factor is

increased by as much as a factor of 10.
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We believe that the outward motion of the CB can

slow very greatly, but we can see no way that en-

trainment can ever fully stop, except through changes

brought about on the nuclear reaction time scale. From

this point of view our equilibrium model is an idealiza-

tion. The jump in fV is responsible for the wiggles in

the temperature gradients shown in Fig. 16, yet the ra-

diative heat conduction fluxes shown in Fig. 24 are very

smooth as they pass through the region of this jump.

This merely shows the power of thermal equilibration.

The thermal adjustment cannot remove the jump in fV

or the feature in the opacity corresponding to it, but

it can nevertheless produce a very smooth thermal con-

duction flux in this region of radii. Our model, in its

present form, addresses core convection. We have not

attempted as yet to generalize it to a convective shell.

Nor have we attempted to make it time dependent, so

that it might describe the creation of a convection zone

other than by a sequence of near-equilibrium states.

We note that we have relied heavily on scaling re-

lationships in order to carry out this study with our

explicit stellar hydrodynamics code PPMstar. We have

argued that the scaling relationships we rely on do hold,

and we have produced evidence that they do in the

specific instance of this stellar model over a reasonable

range of luminosity enhancement factors. It is always

possible that the scaling power laws might change in

some unexplored regime, or that phenomena that pro-

duce the flows we compute might somehow scale with

different powers of the luminosity. With the computa-

tional tools that we have available at present, widening

our exploration to gain more confidence in the scaling

relationships is not practical, although we do hope to

improve our tools in the future.

6.2. Conclusion

In this work we have performed a series of numeri-

cal simulations of 25 M� main sequence stars to investi-

gate the effect of radiation (Prad and radiative diffusion)

on convective and thermal timescales on entrainment,

IGWs, and convection. Below is a summary of our main

findings.

ENTRAINMENT RATE AT THE CB. By including radia-

tive diffusion enhanced by the same factor as luminosity,

we see about a ∼ 30% decrease in the entrainment rate

at every luminosity enhancement §3.3. Consequently,

the entrainment rate extrapolated to the nominal heat-

ing is reduced by about 30% by radiative diffusion, from

1.31×10−4 M�/yr to 9.11×10−5 M�/yr. Note that the

entrainment is measured in a time window much shorter

than the thermal timescale and before the stratification

changes dramatically from the initial state.

DAMPING OF THE IGWS. IGWs of small wavelengths

are damped by radiative diffusion. Therefore, the vortic-

ity in the radiative envelope converges upon mesh refine-

ment, while it does not do so in the absence of radiative

diffusion (§3.4). This behavior may have an impact on

IGW mixing in the stable layer.

THERMAL EQUILIBRIUM. Even in the cases where we

scaled the thermal conductivity linearly with luminos-

ity, the entrainment rate we measured was still too large

to be consistent with observations. We conclude that

our simulations only reach dynamical equilibrium, but

the thermal stratification is still adjusting on a ther-

mal timescale. Close to thermal equilibrium, the en-

trainment rate should drop to a very much lower level.

The long time simulation that we carried out develops

well defined penetration convection (§4). We identify a

mechanism that slows convective boundary mixing and

the outward movement of the CB: namely, the compo-

sition increase begins where N2 is already significantly

positive, see Fig. 16. When convection is gradually sup-

pressed by the stable stratification in the penetration re-

gion, and the motion is more and more of IGW nature,

the time it takes to fully mix increases. This behavior

can explain why the entrainment slows down greatly but

cannot stop. Thus it is possible that there is always a

slow secular change in the composition profile and the

stellar stratification.

BEHAVIOR OF TERMS IN THE KINETIC ENERGY

EQUATION. The u·∇p1 term in the kinetic energy equa-

tion has a major contribution from the tangential com-

ponent of the pressure gradient (§4.3). This contribution

is significant near the CB, where the flows turn horizon-

tal. This term is determined by the global morphology

of the flow and cannot be well approximated solely by

the radial component. This discourages attempts at 1D

approximations for the kinetic energy equation.

TURBULENT KINETIC ENERGY DISSIPATION. In the

entropy equation, the turbulent dissipation is about 10

times smaller than the advective entropy flux term and

the (Frad − Fnuc) term. Its magnitude does not depend

on the physical or numerical viscosity, and we can mea-

sure it and get a converged result with modest grid res-

olutions (§4.3). Nevertheless, an accurate knowledge

of the turbulent dissipation rate is required to know

the size of the penetrative convection region. Overes-

timating the dissipation will end up producing convec-

tion zones that are unrealistically small. Fortunately,

the turbulent dissipation does not vary much inside the

SB over a thermal timescale and converges on a grid of

7683. Hence, only a modest grid (for PPMstar 7683 or

more) and only a few hundred hours of simulated time
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is needed for the flow to sufficiently adjust inside the SB

to give a good measurement of the turbulent dissipation

rate that is implied by assuming that the kinetic energy

equation is in balance there.

MIXING IN THE PRESENCE OF POSITIVE N2. From

our long time simulations, we observe heat conduction

fluxes exceeding the total luminosity and compensating

negative convective heat fluxes beyond the SB. These

features are recognized as penetrative convection. The

compositional jump occurs at all times just inside the

CB, and at late times there is very little turbulent flow

and mixing there. At late times, efficient convective mix-

ing is spatially separated from the compositional change,

and this separation impedes the entrainment of buoy-

ant fluid from above the CB. The spatial separation is

caused by local heating of the gas brought about by the

declining outward heat flux associated with radiative dif-

fusion in the penetration region, where the radiative flux

is approaching the total luminosity from above. This

property of the stratification does not present itself in

the initial setups we have used, which suggests that our

1D initial state derived from the MESA code model does

not characterize convective boundary mixing in a way

that is consistent with 3D simulation. We believe this is

the reason why very large entrainment rates are always

observed early on in our 3D simulations.

A METHOD TO DETERMINE THE CONVECTIVE PEN-

ETRATION DEPTH. We can find a good approximation

to the penetration depth as in §5.3 by

1. Integrate the entropy equation forward in radius

from the center of the star to the SB, staying on

a single adiabat and enforcing hydrostatic equilib-

rium at each radius.

2. Guess the penetration depth (the radius of the

CB) and introduce in the penetration region

smooth continuations of the kinetic energy dissipa-

tion rate, the radiative heat conduction flux, and

the volumetric mixing fraction fV.

3. Integrate the entropy equation forward to the pro-

visional CB radius, and then iterate on the pen-

etration depth estimate (steps 2 and 3) until at

that radius we find that the radial entropy flux

vanishes.

To accomplish the first step and integrate up to the SB,

we assume time independence and a well-mixed, adia-

batic stratification. The convective entropy flux is then

determined, if we know the relatively small rate of ki-

netic energy dissipation. We may find this rate from a

short 3-D simulation of the convection on a relatively

coarse grid, or we may interpolate between such simula-

tion results carried out under similar but not identical

conditions. We can find the dissipation rate inside the

SB even from a non-equilibrium stratification (see Fig-

ure 18: the dissipation rate at an early time is very sim-

ilar to that of a later time much closer to equilibrium).

Alternatively, we may estimate the kinetic energy in the

convection zone from classical mixing-length theory, or

some equivalent approximating model, and then apply

a turbulence model to arrive at the rate of kinetic en-

ergy dissipation. This approach, however, introduces

two free parameters, the mixing length and the scale of

the energy-containing turbulent eddies. After guessing

the penetration depth, we integrate forward by assum-

ing functional forms for three quantities: the kinetic en-

ergy dissipation rate, Φ(r), the radiative heat conduc-

tion flux, Frad(r), and the volumetric mixing fraction,

fV(r), of convection zone gas and gas from the stably

stratified envelope above the convection zone. Then we

determine the penetration depth, and hence the radius

of the CB, by demanding that the convective entropy

flux must vanish there.

1. We approximate the radiative heat conduction flux

by the unique fifth-order polynomial that is con-

tinuously twice differentiable at the SB and that

equals the total luminosity at the boundary of the

penetration region (CB) with vanishing first and

second radial derivatives.

2. We prescribe the functional form of turbulent dis-

sipation in the penetration region as the unique

quartic polynomial that is continuously differen-

tiable with vanishing radial derivative at the SB

and that vanishes at the CB with vanishing first

two radial derivatives.

3. We prescribe the functional form of the volumet-

ric mixing fraction fV in the penetration region as

equal to its value at the SB up to a radius rfoot

and then increasing to unity at the CB with the

shape of the sine wave between its minimum and

maximum at argument values −π/2 and π/2. We

choose rfoot as the radius at which the local heat-

ing from the declining radiative heat conduction

flux has its maximum value.

4. Finally, we require the entropy flux to vanish at

the CB.

DEPENDENCE OF THE PENETRATION DEPTH ON

LUMINOSITY ENHANCEMENT FACTOR. In the limit

of large convection efficiency, the thermal relaxation is

accelerated by enhancement of the luminosity and the
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radiative diffusion by a common factor, so long as this

enhancement keeps the Mach number of the convection

flow small, so that the character of the flow is not much

changed. In the equilibrium that is reached, the pene-

tration depth depends upon the radiative heat conduc-

tion flux, which establishes a positive entropy gradient

in the penetration region, and the turbulent dissipation

of kinetic energy, which together determine in a time-

independent equilibrium the radial entropy flux, which

must vanish at the CB. All these terms that must bal-

ance in equilibrium in this region scale linearly with

the luminosity under these conditions (see similar argu-

ments in §4.3.4, Fig. 30). Hence the penetration depth

for an enhanced luminosity should equal the penetration

depth for the actual star. We have tested this scaling

law for enhancement factors of 1000 and greater, but, at

present, technical issues prevent our demonstrating this

scaling law for smaller enhancement factors.

Using this procedure, we see that the penetration

depth depends upon our estimate of the turbulent con-

vective energy dissipation rate and its functional form in

the penetration region. This dissipation rate cannot be

determined directly, without the use of a model, in a 1-D

stellar evolution computation. We find that the penetra-

tion depth estimate increases/decreases by 30 Mm if we

decrease/increase the turbulent dissipation everywhere

by 5% for our particular stellar model. We note that

as the convection flow nears equilibrium, the convective

mixing, as indicated by the size of Φ(r), declines near

the CB to values very close to zero, which reduces the

convective boundary mixing dramatically and allows the

outward motion of the CB to very nearly cease. The

thermal adjustment in the thin region just before the

CB where the composition changes results in a smooth,

nearly featureless form there for Frad(r), although fea-

tures do appear there in both the temperature and the

opacity.

FUTURE WORK. In future work, we will expand the

cases we have considered, and this will no doubt lead to

refinements of the recommended procedure. However,

we argue that finding the CB location is strictly impos-

sible without knowing the kinetic energy dissipation as

a function of radius, and knowing that is impossible in

a 1D simulation without the use of a model.
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